
Weighted Schnorr Threshold
Signatures

Joseph Wiley Yandle*

2023-01-19

Abstract. We present Weighted Schnorr Threshold Signatures (WSTS akaWileyProofs),
which optimizes the base FROST implementation to reduce bandwidth when FROST
parties control multiple keys.

Keywords: Weighted Aggregate Threshold Signatures; Zero-Knowledge Proofs; FROST

1 Introduction

FROST (Flexible Round-Optimized Schnorr Threshold) [1] is a system for making aggregate threshold signatures.
This allows a set of parties to construct a group key, and then sign messages using this key as long as a threshold
subset cooperates to form the signature. This signature is aggregated, so that its size does not depend on the
number of signing parties.

The design of FROST assumes that each party controls exactly one key, i.e. the threshold is not weighted.
The naive approach to turning FROST into a weighted threshold scheme involves allowing each signer to control
a subset of the parties proportional to its weight. But this results in inefficiencies in the number of messages
required for the protocol, total bandwidth, and computational complexity.

Here we present optimizations on top of vanilla FROST which reduce these inefficiencies when used as a
weighted threshold scheme. We call this scheme WSTS (Weighted Schnorr Threshold Signatures), aka Wi-
leyProofs, in honor not only of the author’s grandfather, but also the greatest engineer of all time: Wiley E.
Coyote.

1.1 Notation

While WSTS can be implemented in any group, we will use curve point terminology exclusively. This will
hopefully make it more accessible to engineers wishing to implement it.

Let G be a generator in an elliptic curve group G. Let f be a polynomial of a scalar variable with scalar
coefficients, and P be a scalar polynomial with curve point coefficients. Both f and P can be evaluated at a
scalar, though the latter will use scalar/point multiplication rather than scalar/scalar.

Let H be a hash function, which maps a series of binary inputs to a fixed size binary digest. For a hash
function to be effective, this mapping must be one−way; i.e. it should be impossible to go from a hash digest
back to the binary inputs. The most common hash functions include SHA2, SHA3, and Blake, each of which
can create a variety of digest sizes, frequently 256 or 512 bits.

*xoloki@gmail.com

1

2 Background

2.1 Threshold Signatures

Threshold signatures allow a subset of a group of N signers to collaborate to sign messages. There are many
such protocols, but they all specify a threshold T , which is the number of signers necessary to create a valid
signature.

2.2 Aggregate Signatures

Traditional approaches to the multisignature problem require that each signer signs separately, which means that
the size of the signature grows linearly with the number of required signers. An aggregate scheme, conversely,
condenses these individual signatures into a single group signature. This allows a large set of signers without
increasing the data size necessary to transmit and store the signature.

In a blockchain context, where transaction fees are proportional to the size of the data, this leads to significant
savings. It also prevents the case where a large group signature would exceed the blocksize, thereby artificially
limiting the number of signers.

2.3 Aggregate Threshold Signatures

By combining the concepts of aggregate and threshold signatures, we arrive at a construction well suited to a
blockchain context. We can have any number of possible signers, and any threshold required to make a valid
signature. This allows signatures which can be used in many more contexts than a traditional multisig construct,
while keeping transaction fees low and taking no more blockchain space than a standard single signature.

2.4 Weighted Aggregate Threshold Signatures

Aggregate threshold signatures function well in a blockchain context, but the number of messages and associated
protocol bandwidth required grow linearly with the total number of parties. In many use cases, though, not all
signers should be given equal weight. This is particularly relevant to Proof of Stake blockchain systems, where
the size of a user’s stake gives their vote more weight.

It would be ideal to construct a native weighted threshold scheme, where this size would instead grow
proportionally to the number of actual signers, rather than the total number of votes.

2.5 Polynomial Interpolation

Consider a polynomial f of degree k:

f(x) = a0 + a1x+ a2x
2 + ...+ akx

k

There are k + 1 coefficients needed to form a polynomial of degree k. Thus in order to uniquely determine
a polynomial of degree k, we will need to evaluate it at k + 1 points, giving us a system of k + 1 equations in
k + 1 unknowns. Typically, we evaluate at the points [1, k + 1]. This is called polynomial interpolation.

While we can use linear algebra to solve these equations, there is no closed form which can be used alge-
braically. Lagrange interpolation [2] is an alternative approach which does provide a closed form. To interpolate
f(x) it uses the Lagrange polynomial L(x) and the Lagrange bases li(x):

L(x) =

k+1∑
i=1

f(xi) · li(x) (1)

li(x) =

k+1∏
j=1,j ̸=i

x− xj

xi − xj
(2)

We can see that li(xi) must be 1, since
xi−xj

xi−xj
= 1. For all m ∈ [1, k + 1] ∋ m ̸= i, li(xm) must be 0, since

one of the top terms will be xm − xm, hence the product must be 0. So ∀i ∈ [1, k + 1]; L(xi) = f(xi).
If we only need to evaluate the interpolated polynomial at 0, we can condense li(0) to:

li(0) =

k+1∏
j=1;j ̸=i

xj

xj − xi
(3)

We call this λi, and use it to quickly evaluate L(0) when given a set (xi, f(xi)).

2

2.6 Schnorr Proofs

A Schnorr proof [3] is a zero knowledge proof of ownership of a public key. Let scalar x be a private key, with
point X = x ·G the corresponding public key. To prove knowledge of x given X, Schnorr proofs use a 3-move
commitment-challenge-response protocol, i.e. a Sigma protocol.

The prover first commits to a random scalar v with the corresponding point V , then sends V to the verifier.
The verifier then returns a random challenge scalar c. The prover then constructs the response r = v+ cx. The
proof consists of the tuple (r, c, V).

To verify the proof, check that:

V = r ·G− c ·X (4)

This must be true for a valid proof, since:

V = v ·G = (r − cx) ·G = r ·G− cx ·G = r ·G− c ·X

To make this protocol non-interactive, use the Fiat-Shamir transform [4] to construct c by hashing the initial
proof elements (G,X, V):

c = H(G,X, V) (5)

2.7 FROST

FROST is an aggregate threshold signing scheme. It allows for a group of N parties to create a distributed
group signing key, then some threshold T of them can cooperate to sign a message. This group signature is an
aggregate of the individual party signatures, and functions as a Schnorr proof.

Thus there are three discrete elements required: distributed key generation, gathering party signatures, and
forming an aggregate group signature using the party signatures.

2.7.1 Distributed Key Generation (DKG)

Like many DKG schemes, FROST employs the technique of polynomial interpolation. But whereas traditional
DKG protocols use a trusted dealer, FROST is a trustless protocol. To accomplish this, each party acts as a
trusted dealer to every other party, and runs a traditional DKG protocol. The parties then combine their keys
trustlessly, and the result is a fully trustless distributed key, of which each party controls an equal share.

Remember that in polynomial interpolation, you need k + 1 points to interpolate a degree k polynomial.
FROST specifies a threshold T , which is the number of signers necessary to sign a message. Thus we will need a
group polynomial of degree T −1 so that any group of T signers will be able to interpolate the key, and thereby
sign. This group polynomial f will be the sum of the party polynomials fi; the group private key x will be
f(0), and the group public key Y will be P (0), where P = f ·G.

First, each party is given a sequential ID i ∈ [1, N], which will be used both to identify it and as an element
in the underlying math. Next, each party i constructs a random private scalar polynomial fi of degree T − 1,
where the coefficients are also scalars. A public DKG share is constructed from fi by multiplying each coefficient
by a generator G. The ID i and public polynomial Pi are then shared to all other parties.

Each party i evaluates its own fi at each j ∈ [1, N], and sends a private DKG share to each consisting
of (j, fi(j)). Each receiving party checks each private share for consistency with the public polynomial of the
sending party. This is done for party i by checking that:

∀j ∈ [1, N] ∋ j ̸= i; fj(i) ·G = Pj(i) (6)

Once the private shares are verified, each party i computes its share si of the group secret key by summing
the private polynomial evaluations at i from all parties, then uses it to construct its public key Yi:

si =

N∑
j=1

fj(i); Yi = si ·G (7)

Each party computes the group public key Y by summing the first coefficient of each public polynomial:

Y =

N∑
j=1

Pj(0) (8)

At this point DKG is complete, and each party i knows (si, Yi) and the group key Y .

3

2.7.2 Gathering Party Signatures

To sign a message m, it is necessary to choose the signing set S before any party can sign, with |S| >= T ;
this allows polynomial interpolation to work. Each party i ∈ S then constructs a private nonce (di, ei) and
corresponding public nonce (Di, Ei), then sends (i,Di, Ei) to all other parties in S; this forms the set B.

Once nonces have been received, each party i ∈ S computes the binding values ρj using B and m:

∀j ∈ S; ρj = H(j,m,B) (9)

Next they compute the interpolation value λi:

λi =
∏

j∈S;j ̸=i

j

j − i
(10)

Each party also computes the sum R:

R =
∑
j∈S

Dj + ρj · Ej (11)

Once they have R and message m they can construct the challenge c:

c = H(Y,R,m) (12)

Finally, each party i can construct its signature share zi:

zi = di + ρi · ei + si · c · λi (13)

2.7.3 Aggregating the Group Signature

Once the aggregator has gathered the signature shares zi, it must first verify that they are valid by checking
that:

zi ·G = Di + ρi · Ei + Yi · c · λi (14)

Finally the aggregator can construct the group signature z:

z =
∑
i∈S

zi (15)

The full signature consists of (R, z) using R from (11).

2.7.4 Verifying the Group Signature

To verify the group signature, construct the value R′ from the group public key Y , challenge c, and group
signature z:

R′ = z ·G− c · Y (16)

If R = R′, the proof is valid.

2.7.5 FROST as a Schnorr Proof

How does the FROST algorithm produce a Schnorr proof? To do so, it should first commit to some randomness
v via V , produce a challenge that depends on V , and then give a response that combines the commitment v,
challenge c, and underlying secret x: r = v + cx.

This is exactly what FROST does. The committed values are the nonces (di, ei), shared as (Di, Ei), and
aggregated into the sum R, which is used to construct the challenge. And if we expand the aggregation of the
party signatures zi, we can see that the response, the signature z, is indeed v + cx:

z =
∑
i∈S

zi =
∑
i∈S

di + ρi · ei + si · c · λi =
∑
i∈S

(di + ρi · ei) + c ·
∑
i∈S

(si · λi)

As we know from Lagrange interpolation,
∑

i∈S si · λi is the group polynomial evaluated at 0, which is the
group private key x.

4

3 Related Work

There are many aggregate threshold signature schemes, some quite similar to FROST. While FROST is op-
timized for a reduced number of rounds in the optimistic case of no byzantine actors, there are others which
are called robust; i.e. they take more rounds in the common case, but can complete even if some signers are
byzantine actors.

An excellent example of a robust protocol is Provably Secure Distributed Schnorr Signatures (PSDSS) [5].
The construction features robustness in both the DKG and signing rounds. At both stages, the protocol will
succeed as long as at least T parties complete it honestly.

We did not choose PSDSS as the basis for WSTS for two reasons. First, rather than gather nonces from
signing parties in each signing round, it runs an additional DKG to create an ephemeral round key. Since DKG
is an expensive protocol in the case of a large number of voting slots, it was suboptimal for our use case. Also,
WSTS-style bandwidth reductions did not appear to be viable for PSDSS.

There are also many native weighted threshold signing schemes, but ultimately all were rejected. Most of
them relied on RSA with a trusted setup, and so were considered prima facie unsuitable.

There was one compelling candidate though: An Efficient and Secure Weighted Threshold Signcryption
Scheme [6]. It uses standard elliptic curves combined with a dynamic knapsack sytem, and the Chinese Re-
mainder theorem to set the voting weights. We rejected it due to its complexity and lack of track record in
production systems. But it remains an ongoing object of research.

4 WSTS: Weighted Schnorr Threshold Signatures

Our contribution is a set of optimizations on top of vanilla FROST to streamline the protocol in a heavily
weighted threshold scenario (e.g. 150 signers controlling a total of 4000 keys). In FROST, each party controls
a single key, which acts as a single vote. A naive implementation of a weighted threshold scheme on top of
FROST involves giving each signer control of multiple parties, proportional to that signer’s weight. This is
functional, but suboptimal.

WSTS optimizes this by having each signer control a single party, but that party now controls multiple
shares of the group key. Crucially, each party still uses only a single polynomial per DKG round and a single
nonce per signing round. This also allows for a single signature per party, rather than per key. This leads to
substantial savings during both DKG and signing.

Whereas FROST contains two primary parameters (T and N), WSTS splits the N parameter into two: the
number of parties Np, and the number of keys Nk. T is now a threshold of the keys, not the parties. Each party
must still send a DKG private share for each key, but DKG public and signature shares are now per party.

Each party is given not only a party ID ip ∈ [1, Np] as in FROST, but also a set of key IDs ik ∈ [1, Nk]. We
denote the latter set as Kip .

4.1 Distributed Key Generation (DKG)

Each party ip ∈ [1, Np] begins DKG by generating a random scalar polynomial fip with scalar coefficients. They
then construct DKG public shares by multiplying the coefficients of fip by the generator, to obtain Pip .

Once the DKG public shares have been distributed, the parties create DKG private shares by evaluating fip
at all points jk ∈ [1, Nk]. These shares consist of a set of tuples (ip, (ik, fip(ik))).

Once a party receives its DKG public and private shares, it first must verify that each share is valid using
a similar formula as before:

∀jp ∈ [1, Np], ik ∈ Kip ; fjp(ik) ·G = Pjp(ik) (17)

Once the private shares are verified, each party ip computes its shares sik of the group secret key by summing
the private polynomial evaluations from all parties for each key ik, giving the group polynomial f evaluated at
ik, i.e. one interpolation point. The parties then use each sik to construct the corresponding public key Yik :

sik =

Np∑
jp=1

fjp(ik); Yik = sik ·G (18)

Each party computes the group public key Y by summing the first coefficient of each public polynomial:

Y =

Np∑
jp=1

Pjp(0) (19)

At this point DKG is complete, and each party ip knows all of its (sik , Yik) and the group key Y .

5

4.2 Gathering Party Signatures

As before, in order for polynomial interpolation to work, it is necessary to choose the signing parties Sp ∋ ∀sp ∈
Sp, sp ∈ [1, Np], and the corresponding Sk which consists of the union of all ik ∈ Kip ∀ip ∈ Sp, before any party
can sign, with |Sk| >= T . Each party ip ∈ Sp then constructs a private nonce (dip , eip) and corresponding
public nonce (Dip , Eip), then sends (ip, Dip , Eip) to all other parties with keys in Sk, forming set B as before.

Once nonces have been received, each party ip ∈ Sp computes the binding values ρjp using B and m:

∀jp ∈ Sp; ρjp = H(jp,m,B) (20)

Next, ∀ik ∈ Kip , they compute the interpolation values λik :

λik =
∏

jk∈Sk;jk ̸=ik

jk
jk − ik

(21)

Each party also computes the sum R:

R =
∑

jp∈Sp

Djp + ρjp · Ejp (22)

Once they have R and message m they can construct the challenge c:

c = H(Y,R,m) (23)

Finally, each party ip can construct its signature share zip :

zip = dip + ρip · eip +
∑

jk∈Kip

sjk · c · λjk (24)

4.3 Aggregating the Group Signature

Once the aggregator has gathered the signature shares zip , it must first verify that they are valid by checking
that:

zip ·G = Dip + ρip · Eip +
∑

jk∈Kip

Yjk · c · λjk (25)

Finally the aggregator can construct the group signature z:

z =
∑

ip∈Sp

zip (26)

The full signature consists of (R, z) using R from (22).

4.4 Verifying the Group Signature

To verify the group signature, construct the value R′ from the group public key Y , challenge c, and group
signature z:

R′ = z ·G− c · Y (27)

If R = R′, the proof is valid.

4.4.1 WSTS as a Schnorr Proof

WSTS constructs a Schnorr proof in the same way as FROST, with the same commitment value and challenge.
The response, the signature z, likewise expands to v + cx:

z =
∑

ip∈Sp

zip =
∑

ip∈Sp

dip + ρip · eip +
∑

jk∈Kip

sjk · c · λjk =
∑

ip∈Sp

(dip + ρip · eip) + c ·
∑

jk∈Sk

(sjk · λjk)

As we know from Lagrange interpolation,
∑

jk∈Sk
sjk · λjk is the group polynomial evaluated at 0, which is

the group private key x.

6

5 Performance

The WSTS Rust reference implementation [7] contains vanilla FROST in the v1 module, and WSTS in the v2
module. This crate contains criterion benchmarks for both v1 and v2.

The results are quite staggering. When testing DKG with 4 signers and 20 keys, v2 outperforms v1 by an
order of magnitude: 53ms per DKG round for v1 compared to 8.3ms for v2. Similar speedups were noted for
party signing and group signing.

In the table, Ns will refer to the number of signers, which is N in FROST and Np in WSTS. Nk is the
number of keys, and T is the threshold.

Table 1: FROST vs WSTS (runtime)

DKG Party Sign Group Sign

Ns Nk T v1 v2 v1 v2 v1 v2

4 20 13 53ms 8.3ms 18ms 0.80ms 2.1ms 0.85ms
4 40 13 200ms 15ms 120ms 2.0ms 6.5ms 2.2ms
4 40 26 420ms 36ms 120ms 2.0ms 6.6ms 2.3ms
4 60 26 1000ms 59ms 380ms 4.0ms 13ms 4.6ms
4 60 40 1900ms 120ms 380ms 4.0ms 13ms 4.6ms
4 80 40 3400ms 160ms 880ms 6.7ms 23ms 7.6ms
4 80 53 4900ms 240ms 880ms 6.7ms 23ms 7.6ms
4 100 53 7900ms 300ms 1700ms 10ms 35ms 12ms
4 100 66 10000ms 400ms 1700ms 10ms 35ms 12ms

6 Robustness

As discussed in Related Work, there are some aggregated threshold schemes which are robust, in that they can
complete even in the presence of byzantine actors, as long as there exists a threshold set which completes the
protocol honestly. These were rejected for a variety of reasons, as discussed.

However, it is possible to develop a meta protocol on top of a non-robust scheme which provides robustness.
It simply requires running a non-robust scheme repeatedly, removing the bad actors as they are exposed.
Eventually the meta protocol will converge to success, if a threshold set of honest actors exists, or to failure if
it does not. Here we will explore two such meta protocols: FIRE and ROAST.

6.1 FIRE

In addition to WSTS, here we also present FROST Interactive Robustness Extension (FIRE). This is a straight-
forward extension of FROST into a meta protocol which provides robustness. It works with both FROST and
WSTS, with minor differences in the protocol.

A FIRE signing round takes place after a DKG round has established a group key. Each round is labeled
with an integer ID i, and consists of a series of sessions j, where j starts at 0 for every round.

Let A be the set of active parties. When a signing round begins, A will contain all parties who successfully
completed DKG. We will remove parties from A as the protocol runs, which will allow us to excise byzantine
actors.

So when round i begins, we request nonces for session j = 0 from A. Once we get k = T nonces for i, j, the
corresponding parties will be selected for the signing set Sj . We then request signature shares from all parties
in Sj . If all sign correctly, and we obtain a valid signature, round i is complete. We must set a timeout for the
signing portion of the session, or else byzantine actors can slow the protocol indefinitely.

Parties who do not return signatures, or return invalid signatures, are removed from A. Parties who did
not return a nonce for round j are also removed. We then we begin session j + 1. All members of A are then
requested to give nonces for session j + 1. The same process happens as before; when we get k = T nonces we
form Sj+1 and again request signature shares.

As before, if the aggregate signature is valid, round i is complete. Otherwise, we begin a new session j + 2,
and continue in the same vein. Since each session will either complete or remove some parties from A, this
algorithm will eventually terminate. When |A| < T , signing round i has failed.

When running a FIRE round with WSTS vs FROST, the only difference is that we must count the number
of keys controlled by each party who responds with a nonce in every session. Only when the sum of keys
controlled by the given nonces equals or exceeds T do we form Sj and begin the signing portion of the session.

7

6.2 ROAST

ROAST[8] is a wrapper around FROST and other threshold signature schemes which provides robustness and
asynchronicity. It operates in a very similar manner to FIRE, but the asynchonicity allows for faster completion
if there exists a set of honest and responsive signers.

ROAST differs from FIRE by allowing session j+1 to run in parallel with session j. To do so, it is necessary
to keep track of two sets: R is the set of responsive signers, and M of known malicious signers. Once a party
becomes a member of set M , all messages from that party will be ignored, and if the governance model includes
sanctions on bad actors, those in M will be nominated for such.

The ROAST paper describes the protocol in terms of events and responses, which makes an initial read
somewhat challenging. We will describe it here more linearly. So as with FIRE, signing round i begins session
j = 0 with the coordinator asking all signers for nonces. R and M are initially the null set. Signers who receive
a request to begin i, 0 respond with a nonce n0 only; this will be different ∀j ̸= 0.

As the coordinator receives responses, the responding signers are placed into R, and their nonces are placed
in ρj . Once |R| = T , the coordinator sends (ρj , R) to the signers to request signature shares. Signers respond
with signature zj , and also a nonce nj+1. Piggybacking the next session’s nonce with the current session’s
signature share improves the responsiveness of the protocol.

Crucially, when the coordinator sends (ρj , R) to signers, those signers in R are removed. As they respond,
the signers are placed back into R if their signature shares are valid; if they are not valid, those signers are
placed into M and declared malicious. Signers who respond with nonces for the current round while the signing
session continues are placed into R with those who provided valid signatures.

As signature shares and nonces are received, the coordinator does two things. It first checks to see if it has
received a full set of valid signature shares; if this happens, and the group signature is valid, then round i is
complete. At the same time, the size of R is examined. When |R| = T , session j + 1 begins. Crucially, this
happens in parallel to session j.

As the sessions continue for each signing round, it is clear that if there exists a threshold set of honest and
responsive signers, the protocol will complete succesfully. Every session will either succeed or add malicious
actors to M . If |M | > (N − T), then the signing round has failed. Likewise, we will never have more than
N − T sessions for any round. Though the paper does not describe the use of timeouts, without them we will
never be able to declare that a round is over, since a byzantine set of actors can simply stall any session where
one of the set is a participant. But since the session timeouts run in parallel, the speedup even in the byzantine
failure case is significant.

As with FIRE, we can use either FROST or WSTS as the signature aggregation protocol, with the only
difference being how we count the nonces when determining if we have a threshold set of possible signers.

7 Acknowledgements

The author would like to thank Alie Slade for initial work on the WSTS algorithm.

References

[1] Chelsea Komlo, Ian Goldberg FROST: Flexible Round-Optimized Schnorr Threshold Signatures 2020.12.22.
https://eprint.iacr.org/2020/852.pdf

[2] Lagrange polynomial. https://en.wikipedia.org/wiki/Lagrange%5Fpolynomial

[3] Schnorr signature. https://en.wikipedia.org/wiki/Schnorr%5Fsignature

[4] Fiat Shamir heuristic. https://en.wikipedia.org/wiki/Fiat%2DShamir%5Fheuristic

[5] D.R. Stinson, R. Strobl Provably Secure Distributed Schnorr Signatures and a (t,n) Threshold Scheme
for Implicit Certificates ACISP 2001. Lecture Notes in Computer Science, vol 2119 2001.01.23.
https://doi.org/10.1007/3-540-47719-5 33

[6] Chien-Hua Tsai An Efficient and Secure Weighted Threshold Signcryption Scheme Journal of Internet Tech-
nology, vol. 20, no. 5 , pp. 1523-1534, Sep. 2019 https://jit.ndhu.edu.tw/article/view/2135

[7] Joey Yandle WSTS Reference Implementation https://github.com/Trust-Machines/wsts

[8] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, Dominique Schroder ROAST: Robust
Asynchronous Schnorr Threshold Signatures https://eprint.iacr.org/2022/550.pdf

8

A Security

A.1 Correctness

In Sections 4.4.1 and 2.7.5, we show how WSTS and FROST reduce to a Schnorr proof. This is sufficient to
show correctness.

9

